Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Fungi (Basel) ; 10(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667962

RESUMO

The genome of the osmophilic Aspergillus wentii, unlike that of the osmotolerant Aspergillus nidulans, contains only the gfdA, but not the gfdB, glycerol 3-phosphate dehydrogenase gene. Here, we studied transcriptomic changes of A. nidulans (reference strain and ΔgfdB gene deletion mutant) and A. wentii (reference strain and An-gfdB expressing mutant) elicited by high osmolarity. A. nidulans showed a canonic hyperosmotic stress response characterized by the upregulation of the trehalose and glycerol metabolism genes (including gfdB), as well as the genes of the high-osmolarity glycerol (HOG) map kinase pathway. The deletion of gfdB caused only negligible alterations in the transcriptome, suggesting that the glycerol metabolism was flexible enough to compensate for the missing GfdB activity in this species. A. wentii responded differently to increased osmolarity than did A. nidulans, e.g., the bulk upregulation of the glycerol and trehalose metabolism genes, along with the HOG pathway genes, was not detected. The expression of An-gfdB in A. wentii did not abolish osmophily, but it reduced growth and caused much bigger alterations in the transcriptome than did the missing gfdB gene in A. nidulans. Flexible glycerol metabolism and hence, two differently regulated gfd genes, may be more beneficial for osmotolerant (living under changing osmolarity) than for osmophilic (living under constantly high osmolarity) species.

2.
Fungal Biol ; 128(2): 1664-1674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
J Fungi (Basel) ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535229

RESUMO

Pathogens have to cope with oxidative, iron- and carbon(glucose)-limitation stresses in the human body. To understand how combined iron-carbon limitation alters oxidative stress responses, Aspergillus fumigatus was cultured in glucose-peptone or peptone containing media supplemented or not with deferiprone as an iron chelator. Changes in the transcriptome in these cultures were recorded after H2O2 treatment. Responses to oxidative stress were highly dependent on the availability of glucose and iron. Out of the 16 stress responsive antioxidative enzyme genes, only the cat2 catalase-peroxidase gene was upregulated in more than two culturing conditions. The transcriptional responses observed in iron metabolism also varied substantially in these cultures. Only extracellular siderophore production appeared important regardless of culturing conditions in oxidative stress protection, while the enhanced synthesis of Fe-S cluster proteins seemed to be crucial for oxidative stress treated iron-limited and fast growing (glucose rich) cultures. Although pathogens and host cells live together in the same place, their culturing conditions (e.g., iron availability or occurrence of oxidative stress) can be different. Therefore, inhibition of a universally important biochemical process, like Fe-S cluster assembly, may selectively inhibit the pathogen growth in vivo and represent a potential target for antifungal therapy.

4.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37998866

RESUMO

Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.

5.
Biol Futur ; 74(3): 337-346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37814124

RESUMO

Basic leucine zipper (bZIP) transcription factors are crucial components of differentiation, cellular homeostasis and the environmental stress defense of eukaryotes. In this work, we further studied the consequence of gene deletion and overexpression of two bZIP transcription factors, NapA and RsmA, on superoxide production, mitochondrial morphology and hyphal diameter of Aspergillus nidulans. We have found that reactive oxygen species production was influenced by both gene deletion and overexpression of napA under tert-butylhydroperoxide (tBOOH) elicited oxidative stress. Furthermore, gene expression of napA negatively correlated with mitochondrial volumetric ratio as well as sterigmatocystin production of A. nidulans. High rsmA expression was accompanied with elevated relative superoxide ratio in the second hyphal compartment. A negative correlation between the expression of rsmA and catalase enzyme activity or mitochondrial volumetric ratio was also confirmed by statistical analysis. Hyphal diameter was independent on either rsmA and napA expression as well as 0.2 mM tBOOH treatment.


Assuntos
Aspergillus nidulans , Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Superóxidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
6.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676031

RESUMO

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

7.
Fungal Biol ; 127(7-8): 1180-1186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495307

RESUMO

The azo dye Congo Red (CR) is frequently used as an agent to elicit cell wall integrity stress in fungi. This highly toxic aromatic, heterocyclic compound contains two azo bonds as chromophore, which are responsible for protonation under acidic conditions, leading to changes in the molecular structure of the dye and the color of the solution. The investigation of how CR affects the growth of Aspergillus nidulans and Aspergillus niger on surface cultures provided us with evidence about its pH-dependent toxicity. Reducing the starting pH of the media from 7 to 3 decreased both the toxicity of CR and the dose-dependence of its toxicity substantially. These changes can be explained by the pH-dependent structural changes of CR and its precipitation at low pH. The pH also depended on the fungi; they could induce a decrease or even an increase, which could be important in the loss of dose-dependence. Our experiments led to the conclusion that in studies to evaluate the antifungal effect of CR, properly buffered solutions with pH values adjusted to above 5 are highly recommended to achieve a well-detectable and dose-dependent antifungal effect. However, for decolorization of CR solutions, lower pH is suggested where the decreased toxicity and solubility of CR could help this process.


Assuntos
Aspergillus nidulans , Vermelho Congo , Vermelho Congo/farmacologia , Aspergillus niger/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Concentração de Íons de Hidrogênio
8.
Front Microbiol ; 14: 1085818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125184

RESUMO

The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. ß2-microglobulin (ß2-MG) and N-acetyl-ß-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.

10.
Toxins (Basel) ; 15(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36977118

RESUMO

The toxins produced by Aspergillus flavus can significantly inhibit the use of maize. As a result of climate change, toxin production is a problem not only in tropical and subtropical areas but in an increasing number of European countries, including Hungary. The effect of meteorological factors and irrigation on mould colonization and aflatoxin B1 (AFB1) mycotoxin production by A. flavus were investigated in natural conditions, as well as the inoculation with a toxigenic isolate in a complex field experiment for three years. As a result of irrigation, the occurrence of fungi increased, and toxin production decreased. The mould count of fungi and toxin accumulation showed differences during the examined growing seasons. The highest AFB1 content was found in 2021. The main environmental factors in predicting mould count were temperature (Tavg, Tmax ≥ 30 °C, Tmax ≥ 32 °C, Tmax ≥ 35 °C) and atmospheric drought (RHmin ≤ 40%). Toxin production was determined by extremely high daily maximum temperatures (Tmax ≥ 35 °C). At natural contamination, the effect of Tmax ≥ 35 °C on AFB1 was maximal (r = 0.560-0.569) in the R4 stage. In the case of artificial inoculation, correlations with environmental factors were stronger (r = 0.665-0.834) during the R2-R6 stages.


Assuntos
Aflatoxinas , Micotoxinas , Aspergillus flavus , Aflatoxina B1 , Zea mays/microbiologia , Fungos , Micotoxinas/farmacologia
11.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766807

RESUMO

The bZIP transcription factors (TFs) govern regulation of development, secondary metabolism, and various stress responses in filamentous fungi. In this work, we carried out genome-wide expression studies employing Illumina RNAseq to understand the roles of the two bZIP transcription factors AtfA and AtfB in Aspergillus nidulans. Comparative analyses of transcriptomes of control, ΔatfA, ΔatfB, and ΔatfAΔatfB mutant strains were performed. Dependence of a gene on AtfA (AtfB) was decided by its differential downregulation both between the reference and ΔatfA (ΔatfB) strains and between the ΔatfB (ΔatfA) and the ΔatfAΔatfB strains in vegetatively grown cells (mycelia) and asexual spores (conidia) of menadione sodium bisulfite (MSB)-treated or untreated cultures. As AtfA is the primary bZIP TF governing stress-response in A. nidulans, the number of differentially expressed genes for ΔatfA was significantly higher than for ΔatfB in both mycelial and conidial samples, and most of the AtfB-dependent genes showed AtfA dependence, too. Moreover, the low number of genes depending on AtfB but not on AtfA can be a consequence of ΔatfA leading to downregulation of atfB expression. Conidial samples showed much higher abundance of atfA and atfB mRNAs and more AtfA- and AtfB-affected genes than mycelial samples. In the presence of MSB, the number of AtfB- (but not of AtfA-) affected genes decreased markedly, which was accompanied with decreased mRNA levels of atfB in MSB-treated mycelial (reference strain) and conidial (ΔatfA mutant) samples. In mycelia, the overlap between the AtfA-dependent genes in MSB-treated and in untreated samples was low, demonstrating that distinct genes can be under AtfA control under different conditions. Carbohydrate metabolism genes were enriched in the set of AtfA-dependent genes. Among them, AtfA-dependence of glycolytic genes in conidial samples was the most notable. Levels of transcripts of certain secondary metabolitic gene clusters, such as the Emericellamide cluster, also showed AtfA-dependent regulation. Genes encoding catalase and histidine-containing phosphotransfer proteins showed AtfA-dependence under all experimental conditions. There were 23 AtfB-dependent genes that did not depend on AtfA under any of our experimental conditions. These included a putative α-glucosidase (agdB), a putative α-amylase, calA, which is involved in early conidial germination, and an alternative oxidase. In summary, in A. nidulans there is a complex interaction between the two bZIP transcription factors, where AtfA plays the primary regulatory role.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Vitamina K 3/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
12.
Appl Microbiol Biotechnol ; 107(7-8): 2423-2436, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811707

RESUMO

Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Glicerolfosfato Desidrogenase/genética , Estresse Fisiológico , Fenótipo
13.
Front Microbiol ; 14: 1260166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235432

RESUMO

Mycotoxins produced by Fusarium species are secondary metabolites with low molecular weight formed by filamentous fungi generally resistant to different environmental factors and, therefore, undergo slow degradation. Contamination by Fusarium mycotoxins in cereals and millets is the foremost quality challenge the food and feed industry faces across the globe. Several types of chemical preservatives are employed in the mitigation process of these mycotoxins, and they help in long-term storage; however, chemical preservatives can be used only to some extent, so the complete elimination of toxins from foods is still a herculean task. The growing demand for green-labeled food drives to evade the use of chemicals in the production processes is getting much demand. Thus, the biocontrol of food toxins is important in the developing food sector. Fusarium mycotoxins are world-spread contaminants naturally occurring in commodities, food, and feed. The major mycotoxins Fusarium species produce are deoxynivalenol, fumonisins, zearalenone, and T2/HT2 toxins. Lactic acid bacteria (LAB), generally regarded as safe (GRAS), is a well-explored bacterial community in food preparations and preservation for ages. Recent research suggests that LAB are the best choice for extenuating Fusarium mycotoxins. Apart from Fusarium mycotoxins, this review focuses on the latest studies on the mechanisms of how LAB effectively detoxify and remove these mycotoxins through their various bioactive molecules and background information of these molecules.

14.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422047

RESUMO

Glucose is a widely used carbon source in laboratory practice to culture Aspergillus fumigatus, however, glucose availability is often low in its "natural habitats", including the human body. We used a physiological−transcriptomical approach to reveal differences between A. fumigatus Af293 cultures incubated on glucose, glucose and peptone, peptone (carbon limitation), or without any carbon source (carbon starvation). Autolytic cell wall degradation was upregulated by both carbon starvation and limitation. The importance of autolytic cell wall degradation in the adaptation to carbon stress was also highlighted by approximately 12.4% of the A. fumigatus genomes harboring duplication of genes involved in N-acetyl glucosamine utilization. Glucose withdrawal increased redox imbalance, altered both the transcription of antioxidative enzyme genes and oxidative stress tolerance, and downregulated iron acquisition, but upregulated heme protein genes. Transcriptional activity of the Gliotoxin cluster was low in all experiments, while the Fumagillin cluster showed substantial activity both on glucose and under carbon starvation, and the Hexadehydro-astechrome cluster only on glucose. We concluded that glucose withdrawal substantially modified the physiology of A. fumigatus, including processes that contribute to virulence. This may explain the challenge of predicting the in vivo behavior of A. fumigatus based on data from glucose rich cultures.

15.
Front Microbiol ; 13: 1003709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204617

RESUMO

Transcription factors (TFs) with the basic leucin zipper domain are key elements of the stress response pathways in filamentous fungi. In this study, we functionally characterized the two bZIP type TFs AtfA and AtfB by deletion (Δ) and overexpression (OE) of their encoding genes in all combination: ΔatfA, ΔatfB, ΔatfAΔatfB, ΔatfAatfBOE, ΔatfBatfAOE, atfAOE, atfBOE and atfAOEatfBOE in Aspergillus nidulans. Based on our previous studies, ΔatfA increased the sensitivity of the fungus to oxidative stress mediated by menadione sodium bisulfite (MSB) and tert-butylhydroperoxide (tBOOH), while ΔatfB was not sensitive to any oxidative stress generating agents, namely MSB, tBOOH and diamide at all. Contrarily, the ΔatfB mutant was sensitive to NaCl, but tolerant to sorbitol. Overexpression of atfB was able to compensate the MSB sensitivity of the ΔatfA mutant. Heavy metal stress elicited by CdCl2 reduced diameter of the atfBOE and atfAOEatfBOE mutant colonies to about 50% of control colony, while the cell wall stress generating agent CongoRed increased the tolerance of the ΔatfA mutant. When we tested the heat stress sensitivity of the asexual spores (conidiospores) of the mutants, we found that conidiospores of ΔatfAatfBOE and ΔatfBatfAOE showed nearly 100% tolerance to heat stress. Asexual development was negatively affected by ΔatfA, while atfAOE and atfAOE coupled with ΔatfB increased the number of conidiospores of the fungus approximately 150% compared to the control. Overexpression of atfB led to a 25% reduction in the number of conidiospores, but increased levels of abaA mRNA and size of conidiospores. Sexual fruiting body (cleistothecium) formation was diminished in the ΔatfA and the ΔatfAΔatfB mutants, while relatively elevated in the ΔatfB and the ΔatfBatfAOE mutants. Production of the mycotoxin sterigmatocystin (ST) was decreased to undetectable levels in the ΔatfA mutant, yet ST production was restored in the ΔatfAΔatfB mutant, suggesting that ΔatfB can suppress ST production defect caused by ΔatfA. Levels of ST were also significantly decreased in the ΔatfAatfBOE, ΔatfBatfAOE and atfAOEatfBOE mutants.

16.
Physiol Genomics ; 54(11): 457-469, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250559

RESUMO

The vast majority of studies focusing on the effects of endurance exercise on hematological parameters and leukocyte gene expression were performed in adult men, so our aim was to investigate these changes in young females. Four young (age 15.3 ± 1.3 yr) elite female athletes completed an exercise session, in which they accomplished the cycling and running disciplines of a junior triathlon race. Blood samples were taken immediately before the exercise, right after the exercise, and then 1, 2, and 7 days later. Analysis of cell counts and routine biochemical parameters were complemented by RNA sequencing (RNA-seq) to whole blood samples. The applied exercise load did not trigger remarkable changes in either cardiovascular or biochemical parameters; however, it caused a significant increase in the percentage of neutrophils and a significant reduction in the ratio of lymphocytes immediately after exercise. Furthermore, endurance exercise induced a characteristic gene expression pattern change in the blood transcriptome. Gene set enrichment analysis (GSEA) using the Reactome database revealed that the expression of genes involved in immune processes and neutrophil granulocyte activation was upregulated, whereas the expression of genes important in translation and rRNA metabolism was downregulated. Comparison of a set of immune cell gene signatures (ImSig) and our transcriptomic data identified 15 overlapping genes related to T-cell functions and involved in podosome formation and adhesion to the vessel wall. Our results suggest that RNA-seq to whole blood together with ImSig analysis are useful tools for the investigation of systemic responses to endurance exercise.


Assuntos
Corrida , Transcriptoma , Masculino , Humanos , Feminino , Adolescente , Transcriptoma/genética , Resistência Física/genética , Projetos Piloto , Atletas , Corrida/fisiologia
17.
Scientifica (Cairo) ; 2022: 6059880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247725

RESUMO

Enzyme-coupled immunosorbent assays (ELISA) methods are usually validated only for homogenous matrixes like corn and wheat. More complex materials like fermented forages and mixed feed are not targeted for mycotoxin measurement. The low number of ELISA methods found in the literature neither contained the pH set for fermented forages nor dealt with the setting of the matrix:solvent ratio. The sample preparation of these matrixes needs to be optimized and validated for aflatoxin B1 analysis from fermented forages (corn silage and rye haylage) and mixed feed for Romer AgraQuant® Aflatoxin B1 ELISA (Romer Labs, Austria). Drying and pH adjustment of fermented forages had high importance before mycotoxin extraction. Because of the matrix swelling, the 1 : 5 ratio of the sample/extraction solute should have been increased to 1 : 8 to gain the highest aflatoxin B1 recovery. The accuracy and repeatability of the analysis were tested and found to be suitable for further application.

18.
Toxins (Basel) ; 14(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36136529

RESUMO

Mycotoxin contaminations in the feed and food chain are common. Either directly or indirectly, mycotoxins enter the human body through the consumption of food of plant and animal origin. Bacteria with a high mycotoxin elimination capability can reduce mycotoxin contamination in feed and food. Four Gram-positive endospore-forming bacteria (Bacillus thuringiensis AMK10/1, Lysinibacillus boronitolerans AMK9/1, Lysinibacillus fusiformis AMK10/2, and Rummeliibacillus suwonensis AMK9/2) were isolated from fermented forages and tested for their deoxynivalenol (DON), aflatoxin B1 (AFB1), and zearalenone (ZEA) elimination potentials. Notably, the contribution of bacterial cell wall fractions to the observed outstanding ZEA elimination rates was demonstrated; however, the ZEA elimination differed considerably within the tested group of Gram-positive bacteria. It is worth noting that the purified cell wall of L. boronitolerans AMK9/1, L. fusiformis AMK10/2 and B. thuringiensis AMK10/1 were highly efficient in eliminating ZEA and the teichoic acid fractions of B. thuringiensis AMK10/1, and L. fusiformis AMK10/2 could also be successfully used in ZEA binding. The ZEA elimination capacity of viable R. suwonensis AMK9/2 cells was outstanding (40%). Meanwhile, R. suwonensis AMK9/2 and L. boronitolerans AMK9/1 cells produced significant esterase activities, and ZEA elimination of the cell wall fractions of that species did not correlate with esterase activity. DON and AFB1 binding capabilities of the tested bacterial cells and their cell wall fractions were low, except for B. thuringiensis AMK10/1, where the observed high 64% AFB1 elimination could be linked to the surface layer (S-layer) fraction of the cell wall.


Assuntos
Firmicutes , Contaminação de Alimentos , Micotoxinas , Zearalenona , Aflatoxina B1/análise , Esterases , Firmicutes/metabolismo , Contaminação de Alimentos/prevenção & controle , Tricotecenos , Zearalenona/análise
19.
Front Microbiol ; 13: 1000688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118212

RESUMO

Aflatoxin contamination can appear in various points of the food chain. If animals are fed with contaminated feed, AFB1 is transformed-among others-to aflatoxin M1 (AFM1) metabolite. AFM1 is less toxic than AFB1, but it is still genotoxic and carcinogenic and it is present in raw and processed milk and all kinds of milk products. In this article, the chronic exposure estimation and risk characterization of Hungarian consumers are presented, based on the AFM1 contamination of milk and dairy products, and calculated with a probabilistic method, the two-dimensional Monte-Carlo model. The calculations were performed using the R plugin (mc2d package) integrated into the KNIME (Konstanz Information Miner) software. The simulations were performed using data from the 2018-2020 food consumption survey. The AFM1 analytical data were derived from the Hungarian monitoring survey and 1,985 milk samples were analyzed within the framework of the joint project of the University of Debrecen and the National Food Chain Safety Office of Hungary (NÉBIH). Limited AFM1 concentrations were available for processed dairy products; therefore, a database of AFM1 processing factors for sour milk products and various cheeses was produced based on the latest literature data, and consumer exposure was calculated with the milk equivalent of the consumed quantities of these products. For risk characterization, the calculation of hazard index (HI), Margin of Exposure, and the hepatocellular carcinoma incidence were used. The results indicate that the group of toddlers that consume a large amount of milk and milk products are exposed to a certain level of health risk. The mean estimated daily intake of toddlers is in the range of 0.008-0.221 ng kg-1 bw day-1; the 97.5th percentile exposure of toddlers is between 0.013 ng kg-1 bw day-1 and 0.379 ng kg-1 bw day-1, resulting in a HI above 1. According to our study, the exposure of older age groups does not pose an emergent health risk. Nevertheless, the presence of carcinogenic compounds should be kept to a minimum in the whole population.

20.
Biomark Insights ; 17: 11772719221111882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859925

RESUMO

Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO2) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...